Abstract

The solubility of Ni(OH)2 in acids was been the major impediment that has been preventing the usage of acid electrolytes like 1 M H2SO4 in supercapacitors and batteries that contain Ni(OH)2 as electrode material. This impediment is successfully removed and impressive energy storage characters were achieved from an electrode made up of Ni(OH)2 in the presence of acid electrolyte of 1 M H2SO4. This acid insoluble form of Ni(OH)2 was achieved by synthesizing it in situ in the presence of graphene oxide by chemical reduction method to produce the stable nanocomposite of reduced graphene oxide (rGO) and Ni(OH)2. The insolubility of Ni(OH)2 in 1 M H2SO4 was carefully studied for nearly six months and proved to be a factual observation. Remarkably, the rGO/Ni(OH)2 composite exhibited the better energy storage performance in the presence of 1 M H2SO4 in relation with conventional methods that involve basic electrolytes like NaOH and KOH for Ni(OH)2. The supercapacitor containing rGO/Ni(OH)2 composite and 1 M H2SO4, was stable in storing and delivering the energy without deterioration up to 31,500 cycles, with an uniqueness of increase in energy storage with increase in cycles of energy storage and delivery. Remarkably, two type of faradaic processes are observed to be contributing to the total energy storage of Ni(OH)2, of which one is unprecedented. The superior specific energy (E) and specific capacitance (Cs) achieved are 130.7175 W h kg−1 (comparable with Li-ion batteries of 3 V) and 653.5947 F g−1 at 1 A g−1. This superior Cs is higher than the theoretical Cs expected from this composite for this specific composition (rGO33.33 % and Ni(OH)2 66.66 %) (1571 F g−1) and higher than the theoretical Cs of Ni(OH)2 (2082 F g−1). It is expected that this study would be an inevitable attraction and take the applicability of Ni(OH)2 to higher level and make it one of the meritorious materials for future energy storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.