Abstract
We present simulation results quantitatively showing that circularly polarized light persists in transmission through several real-world and model fog environments better than linearly polarized light over broad wavelength ranges from the visible through the infrared. We present results for polydisperse particle distributions from realistic and measured fog environments, comparing the polarization persistence of linear and circular polarization. Using a polarization-tracking Monte Carlo program, we simulate polarized light propagation through four MODTRAN fog models (moderate and heavy radiation fog and moderate and heavy advection fog) and four real-world measured fog particle distributions (Garland measured radiation and advection fogs, Kunkel measured advection fog, and Sandia National Laboratories' Fog Facility's fog). Simulations were performed for each fog environment with wavelengths ranging from 0.4 to 12µm for increasing optical thicknesses of 5, 10, and 15 (increasing fog density or sensing range). Circular polarization persists superiorly for all optical wavelength bands from the visible to the long-wave infrared in nearly all fog types for all optical thicknesses. Throughout our analysis, we show that if even a small percentage of a fog's particle size distribution is made up of large particles, those particles dominate the scattering process. In nearly all real-world fog situations, these large particles and their dominant scattering characteristics are present. Larger particles are predominantly forward-scattering and contribute to circular polarization's persistence superiority over broad wavelength ranges and optical thicknesses/range. Circularly polarized light can transmit over 30% more signal in its intended state compared to linearly polarized light through real-world fog environments. This work broadens the understanding of how circular polarization persists through natural fog particle distributions with natural variations in mode particle radius and single or bimodal characteristics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.