Abstract

Non-mulberry silk polymers have a promising future in biomedical applications. However, the dissolution of non-mulberry silk fiber is a still challenge and this poor processability has limited the use of this material. Here, we report a unique protocol to process the Antheraea mylitta (AM) silk fiber. We have shown that the cryo-milling of silk fiber reduces the beta sheet content by more than 10% and results in an SF powder that completely dissolves in routine solvents like trifluoroacetic acid (TFA) within few hours to form highly concentrated solutions (~20 wt%). Further, these solutions can be processed using conventional processing techniques such as electrospinning to form 3D scaffolds. Bombyx mori (BM) silk was used as a control sample in the study. In-vitro studies were also performed to monitor cell adhesion and proliferation and hMSCs differentiation into osteogenic lineage. Finally, the osteogenic potential of the scaffolds was also evaluated by a 4-week implantation study in rat calvarial model. The in-vitro and in-vivo results show that the processing techniques do not affect the biocompatibility of the material and the AM scaffolds support bone regeneration. Our results, thus, show that cryo-milling facilitates enhanced processability of non-mulberry silk and therefore expands its potential in biomedical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.