Abstract
A theophylline monohydrate (THm) powder, with particle size and shape substantially similar to a theophylline anhydrate powder, was prepared by vapor-mediated phase conversion. The elimination of possible contributions by particle size and shape to tableting properties made it possible to unambiguously identify the role of bonding area and bonding strength on powder tableting performance. It was also shown that accurate true density is essential for correct analysis and understanding of tableting behavior of THm. Experimental evidence revealed surprisingly high plasticity of THm. This is explained by its unique ladder-like structure, where rigid molecular dimers (rungs) weakly connect to more rigid water chains (rails). The low energy barrier for moving rigid dimers down the rigid water chains enables facile propagation of dislocations in THm crystals when subjected to an external stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.