Abstract

Ever growing research on modified semiconductor oxides made a significant progress in catalytic functional materials. In this article, we report the modification of ZnO photocatalyst by a simple hydrothermal decomposition method utilizing the cheaply available industrial waste fly ash. This modified Fly ash-ZnO photocatalyst was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS), high resolution transmission electron microscopy (HR-TEM), Atomic force microscopy (AFM), photoluminescence spectroscopy (PL) and diffuse reflectance spectroscopy (DRS). The XRD pattern indicates the presence of fly ash components and the hexagonal wurtzite structured ZnO. TEM images reveal well defined nanorod like structure. Reduction of photoluminescence intensity of Fly ash-ZnO at 418 nm, when compared to, prepared ZnO, indicates the suppression of recombination of the photogenerated electron–hole pair by loaded Fly ash on ZnO. Fly ash-ZnO exhibits enhanced photocatalytic activity for the degradation of azo dyes Reactive Orange 4, Rhodamine-B and Trypan Blue. This catalyst shows higher electrocatalytic activity than ZnO in the oxidation of methanol. Significant hydrophobicity of Fly ash-ZnO reveals its self cleaning property.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.