Abstract

We demonstrated production of a superior performance biodiesel referred to here as fatty acid fusel alcohol esters (FAFE) – by reacting fusel alcohols (isobutanol, 3-methyl-1-butanol, and (S)-(-)-2-methyl-1-butanol) with oil (glyceryl trioleate) using lipase from Aspergillus oryzae. Reaction conditions corresponding to a molar ratio of 5:1 (fusel alcohols to oil), enzyme loading of 2% w/w, reaction temperature of 35 °C, shaking speed of 250 rpm, and reaction time of 24 h achieved >97% conversion to FAFE. Further, FAFE obtained from reacting a fusel alcohol mixture with corn oil were evaluated for use as a fuel for diesel engines. FAFE mixtures showed superior combustion and cold-flow properties, with the derived cetane numbers up to 4.8 points higher, cloud points up to −6 °C lower, and the heat of combustion up to 2.1% higher than the corresponding FAME samples, depending on the fusel mixture used. This represents a significant improvement for all three metrics, which are typically anti-correlated. FAFE provides a new opportunity for expanded usage of biodiesel by addressing feedstock limitations, fuel performance, and low temperature tolerance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.