Abstract

Covalent organic polymers (COPs) as emerging porous materials with ultrahigh hydrothermal stability and well-defined and adjustable architectures have aroused great interest in the electrochemical field. Here, we reported a rational design approach for the preparation of a bifunctional electrocatalyst with the assistance of a predesigned bimetallic covalent organic polymer. With the predesigned nitrogen position and structural features of COP materials, the obtained CCOPTDP-FeNi-SiO2 catalyst affords a remarkable bifunctional performance with a positive half-wave potential (0.89 V vs. reversible hydrogen electrode: RHE, superior to the benchmark Pt/C) for ORR activity, and a low overpotential (0.31 V better than the benchmark IrO2) at 10 mA cm-2 for OER activity in alkaline solution. The potential gap between E1/2 and Ej=10 reaches 0.650 V, in line with that observed in the current state-of-the-art bifunctional oxygen electrode materials. Moreover, a homemade rechargeable Zn-air flow battery using the CCOPTDP-FeNi-SiO2 catalyst as an air cathode exhibits an almost twofold power density (112.8 vs. 64.8 mW cm-2) and a lower charge-discharge voltage gap, compared with a commercialized noble Pt/C + IrO2/C-driven Zn-air flow battery. More importantly, the CCOPTDP-FeNi-SiO2-driven battery maintains a better cycling stability compared to a noble metal-driven battery without performance decay. Accordingly, this work will open up new ways for fabricating practical oxygen electrodes for, but not limited to, metal air based battery applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.