Abstract

Sudden cardiac arrest is one of the leading causes of death. Conventional CPR techniques after cardiac arrest provide circulation with reduced and varying blood flow and pressure. We hypothesize that using pressure- and flow-controlled reperfusion of the whole body improves neurological recovery and survival after 15 min of normothermic cardiac arrest. Pigs were randomized in two experimental groups and exposed to 15 min of ventricular fibrillation (VF). After this period, the animals in the control group received conventional CPR with open chest compression (n=6), while circulation in the treatment group (n=6) was established with an extracorporeal life support system (ECLS) to control blood pressure and flow. Follow-up included the assessment of neurological recovery and magnetic resonance imaging (MRI) for up to 7 days. Five of the six animals in the control group died, one animal was resuscitated successfully. In the treatment group, 1/6 could not be separated from ECLS. Five out of the six pigs survived and were transferred to the animal facility. One animal was unable to walk and had to be sacrificed 30 hours after ECLS. The remaining 4 animals of the treatment group and the surviving pig from the control group showed complete neurological recovery. Brain MRI revealed no pathological changes. We were able to demonstrate a significant improvement in survival after 15 minutes of normothermic cardiac arrest. These results support our hypothesis that using an ECLS for pressure- and flow-controlled circulation after circulatory arrest is superior to conventional CPR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call