Abstract

This study combines the brand new concept of high-entropy designed materials with the superior properties of metallic glasses to obtain a NbTaTiVZr high-entropy metallic glass (HEMG) coating for biomedical applications. The amorphous structure is achieved by a room temperature magnetron sputtering deposition, whereas a bcc crystalline phase, typical of high-entropy alloys (HEA), is obtained at 400 °C. X-ray photoelectron spectroscopy showed that the oxygen concentration on the coatings surface is > 50% and significantly higher than in the bulk (∼ 5%). The NbTaTiVZr(O) HEMG surface is completely passivated, in contrast to the metallic + oxide outermost layer found for the HEA. Potentiodynamic polarization tests attested an improved corrosion resistance of the HEMG surface, which showed also increased hydrophilicity compared to the crystalline sample. In vitro biocompatibility investigations using both the hTERT-immortalized bone marrow mesenchymal cells and MG-63 osteosarcoma cells showed excellent viability (∼ 98% and ∼ 96%, respectively) and adhesion onto the HEMG coating after 96 h of incubation, indicating the integrity and biosafety of this surface. The cell viability and proliferation on the HEA and Ti (used as a benchmark) surfaces were much inferior. The enhanced surface protection and the superior biocompatibility makes the HEMG promising to be employed as a biocoating on orthopedic implants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.