Abstract

We introduce a computational approach to estimate the hardness and stiffness of diamond surfaces and nanoparticles by studying their elastic response to atomic nanoindentation. Results of our ab initio density functional calculations explain the observed hardness differences between different diamond surfaces and suggest bond stiffening in bare and hydrogenated fragments of cubic diamond and lonsdaleite. The increase in hardness and stiffness can be traced back to bond length reduction especially in bare nanoscale diamond clusters, a result of compression that is driven by the dominant role of the surface tension.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.