Abstract

We report a novel phenomenon in which minor element additions (∼1 at.%) can dramatically enhance the glass-forming ability (GFA) of CuZr(Al) metallic alloy, which can be cast into glasses with large cross-section sizes using a conventional casting method. The minor additions cause the liquidus temperature Tl to decrease from 1219 (for Cu50Zr50) to 1139 K [for (Cu50Zr50)92Al7Gd1], and the reduced glass transition temperature Trg (=Tg/Tl) of the alloys increases from 0.550 (for Cu50Zr50) to 0.613 [for (Cu50Zr50)92Al7Gd1]. The mechanism involved in the achievement of the superior GFA is explained by the stronger tendency of short-range ordering in the stronger microalloyed alloys as well as the thermodynamic and kinetic aspects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.