Abstract
The design of electrolytes holds paramount importance for technology iteration of sodium metal batteries. This study introduces 1,4-Dichloro-2-iodobenzene as an electrolyte additive into the in-situ polymerization process of an gel polymer electrolyte (FS-GPE-DCIB-0.1 %) with high ionic conductivity (3.96 × 10-3 S cm−1 at 30 ℃). The Na|FS-GPE-DCIB-0.1 %|Na battery demonstrates stable cycling for over 1000 h at a current density of 0.1 mA cm−2. Even at 10C, NVP|FS-GPE-DCIB-0.1 %|Na battery can maintain a capacity retention rate of 91.6 % after undergoing 6000 cycles. This work demonstrates a promising potential for practical implementation of sodium metal battery.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.