Abstract

ObjectivesDespite a common utilization of “Negative Pressure Wound Therapy” (NPWT) Devices in a wide range of specialties, some of the basic mechanisms of action of the techniques are still on debate. Conflicting results from prior studies demonstrate our lack of understanding how wound-bed perfusion or cutaneous microcirculation is affected by NPWT.MethodsWe conducted a prospective randomized study which included 45 healthy subjects to further investigate the acute effects of NPWT on cutaneous microcirculation underneath the applied dressing. Three modes of application, namely, continuous, intermittent, cyclic, were tested. Amongst others, measurements of elicited surface pressure and a comprehensive microcirculatory analysis were carried out by utilizing an O2C-device. For the detection of (systemic) remote effects, perfusion changes of the contra-lateral thigh were evaluated.ResultsAll three tested modes of application led to a significant (p < 0.05) improvement in local tissue perfusion with an increased blood flow of max +151% and tissue oxygen saturation of +28.2% compared to baseline values. Surface pressure under the dressing significantly increased up to 29.29 mmHg due to the activation of the NPWT device. Continuous, intermittent, and cyclic application of negative pressure were accurately sensed by participants, resulting in reported pain values that mirrored the different levels of applied suction. Although the cyclic application mode showed the most pronounced effects regarding microcirculatory changes, no statistical significance between groups was observed.ConclusionWe could demonstrate a significant improvement of cutaneous microcirculation under an applied NPWT dressing with favorable effects due to cyclic mode of application. An increased surface pressure leads to a better venous drainage of the tissue, which was shown to increase arterial inflow with a consecutive improvement of oxygen supply. Further research is warranted to evaluate our findings regarding wound bed perfusion in the clinical field with respect to formation of granulation tissue and wound healing.

Highlights

  • IntroductionThe application of “negative pressure” has evolved to a cornerstone in the treatment of acute and chronic wounds in almost all specialties

  • All but closed incision Negative Pressure Therapy” (ciNPT) are used for treatment of open wounds and exert the known beneficial effects of “negative pressure” therapy on wound healing, i.e., sufficient temporary wound closure, promotion of wound bed granulation, mechanical contraction and stabilization of wound margins, and efficient reduction of bacterial load

  • Blood Flow (BF) Regardless of the application of different pressure levels, intervals of suction and cutaneous blood flow below the foam dressing was significantly enhanced in all three groups (Figure 2)

Read more

Summary

Introduction

The application of “negative pressure” has evolved to a cornerstone in the treatment of acute and chronic wounds in almost all specialties. Various available synonyms reflect the past developments and current applications of the technique involving, amongst others, “Vacuum-assisted closure” (VAC), “Negative Pressure Wound Therapy” (NPWT), “closed incision Negative Pressure Therapy” (ciNPT), or “Negative Pressure Wound Therapy with instillation” (NPWTi) [1, 2]. All but ciNPT are used for treatment of open wounds and exert the known beneficial effects of “negative pressure” therapy on wound healing, i.e., sufficient temporary wound closure, promotion of wound bed granulation, mechanical contraction and stabilization of wound margins, and efficient reduction of bacterial load. Results from different research groups have partly shown diverging results which could seriously question the hypothesis of an enhancement of local and adjacent wound bed perfusion due to application of a negative pressure dressing [2–5]. The utilization of an otherwise broadly used technique for perfusion analysis, laser-doppler velocimetry, was questioned to be flawed due to the impact of “pressure-artifacts” [6], resulting in a false-positive sign of an enhancement in perfusion underneath an applied NPWT dressing

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call