Abstract

Electronic conductivity of molecular wires is a critical fundamental issue in molecular electronics. pi-Conjugated redox molecular wires with the superior long-range electron-transport ability could be constructed on a gold surface through the stepwise ligand-metal coordination method. The beta(d) value, indicating the degree of decrease in the electron-transfer rate constant with distance along the molecular wire between the electrode and the redox active species at the terminal of the wire, were 0.008-0.07 A(-1) and 0.002-0.004 A(-1) for molecular wires of bis(terpyridine)iron and bis(terpyridine)cobalt complex oligomers, respectively. The influences on beta(d) by the chemical structure of molecular wires and the terminal redox units, temperature, electric field, and electrolyte concentration were clarified. The results indicate that facile sequential electron hopping between neighboring metal-complex units within the wire is responsible for the high electron-transport ability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.