Abstract
Numerous failures in melanoma treatment as a highly aggressive form of skin cancer with an unfavorable prognosis and excessive resistance to conventional therapies are prompting an urgent search for more effective therapeutic tools. Consequently, to increase the treatment efficiency and to reduce the side effects of traditional administration ways, herein, it has become crucial to combine photodynamic therapy as a promising therapeutic approach with the selectivity and biocompatibility of a novel colloidal transdermal nanoplatform for effective delivery of hybrid cargo with synergistic effects on melanoma cells. The self-assembled bilosomes, co-stabilized with L-α-phosphatidylcholine, sodium cholate, Pluronic® P123, and cholesterol, were designated, and the stability of colloidal vesicles was studied using dynamic and electrophoretic light scattering, also provided in cell culture medium (Dulbecco's Modified Eagle's Medium). The hybrid compounds - a classical photosensitizer (Methylene Blue) along with a complementary natural polyphenolic agent (curcumin), were successfully co-loaded, as confirmed by UV-Vis, ATR-FTIR, and fluorescent spectroscopies. The biocompatibility and usefulness of the polymer functionalized bilosome with loaded double cargo were demonstrated in vitro cyto- and phototoxicity experiments using normal keratinocytes and melanoma cancer cells. Thein vitrobioimaging and immunofluorescence study upon human skin epithelial (A375) and malignant (Me45) melanoma cell lines established the protective effect of the PEGylated bilosome surface. This effect was confirmed in cytotoxicity experiments, also determined on human cutaneous (HaCaT) keratinocytes. The flow cytometry experiments indicated the enhanced uptake of the encapsulated hybrid cargo compared to the non-loaded MB and CUR molecules, as well as a selectivity of the obtained nanocarriers upon tumor cell lines. The phyto-photodynamic action provided 24h-post irradiation revealed a more significant influence of the nanoplatform on Me45 cells in contrast to the A375 cell line, causing the cell viability rate below 20% of the control. As a result, we established an innovative and effective strategy for potential metastatic melanoma treatment through the synergism of phyto-photodynamic therapy and novel bilosomal-origin nanophotosensitizers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.