Abstract

The impact of optically active biomaterials on drug delivery remains a vital and hot topic. To reveal special advantages of optically active mesoporous silica nanoparticles in delivering drug in cells, optically active mesoporous silica nanoparticles deliver doxorubicin (DOX) with chiral behavior in cancer cells was studied. The present work focused on two types of optically active mesoporous silica nanoparticles named as levorotatory optically active mesoporous silica nanoparticles (LOA-MSNs) and dextrorotatory optically active mesoporous silica nanoparticles (DOA-MSNs) and examined their effects on cellular DOX delivery in cancer cells. The obtained LOA-MSNs and DOA-MSNs were regular spheres with particle diameters ranging from 200 to 250nm, and their shell layer was filled with interlaced channels. Our results indicated that LOA-MSNs and DOA-MSNs did not exhibit cytotoxicity towards MCF-7 cells and B16 cells. The cytotoxicity of DOX-loaded LOA-MSNs and DOX-loaded DOA-MSNs were stronger than DOX owing to the synergistic retention and accumulation effect of nanoparticles. More importantly, DOX-loaded DOA-MSNs presented stronger cytotoxicity due to the higher synergistic retention and accumulation effect of DOA-MSNs. These findings suggest that DOA-MSNs with superior cellular delivery of DOX have great potential to advance the development of optical anti-tumor delivery system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.