Abstract

Reactive ball milling was employed to synthesize nanocrystalline MgH2 powders using a high-energy ball milling of pure Mg powders under 50 bar of a hydrogen gas atmosphere. The end-product of MgH2 powders obtained after 200 h of a continuous reactive ball milling time composed of fine grains (∼7 nm in diameter) of γ and β phases. A new catalytic agent of big-cube Zr2Ni nanocrystalline phase, which is proposed in the present study for improving the hydrogenation/dehydrogenation kinetics of MgH2 powders, was obtained upon high-energy ball milling of tetragonal-Zr2Ni powders for 150 h. The as-ball milled Zr2Ni powders consisted of ultrafine grains with an average grain size of 6 nm in diameter. The as-prepared MgH2 powders were mechanically doped with 10 wt% of big-cube Zr2Ni powders for 50 h, using high-energy ball mill under a hydrogen gas atmosphere for 50 h. The powders obtained after 50 h of milling enjoyed homogeneous morphology and uniform composition close to the starting nominal composition. Moreover, this binary nanocomposite system possessed superior hydrogenation/dehydrogenation kinetics at 250 °C, as suggested by the short time required to absorb and desorb 5.1 wt% H2 within 100 s and 613 s, respectively. At this temperature, the synthesized nanocomposite powders possessed excellent absorption/desorption cyclability of 2546 complete cycles within 1250 h. However, a minor degradation (∼0.5 wt% H2) in the hydrogen storage capacity was observed between 300 h and 2546 h of the cycle-life-time. This slight degradation took place due to the grain growth came off in the Mg/Zr2Ni grains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.