Abstract

Synthesis of highly efficient antibacterial agents has become highly important due to emergence of antibiotic resistance. Herein, Pristine ZnO and ZnO-CuO nanocomposite has been synthesized by simple chemical co-precipitation method and characterized by X-ray diffraction (XRD), microscopic and spectroscopic techniques. The prepared ZnO-CuO nanocomposite is composed of two dimensional nanosheets consisting of hexagonal ZnO and monoclinic CuO crystal phases present in coexistence. Moreover, a minute presence of Cu5Zn8 cubic phase has been evident in the XRD pattern of ZnO-CuO nanocomposite. Fourier Transform Infrared Spectroscopy (FTIR) spectrum of the prepared nanocomposite has revealed the presence of vibrational modes related to both Zn-O and Cu-O. Photoluminescence (PL) investigations depicted the formation of huge amounts of surface defects in ZnO-CuO nanocomposite as compared to pristine ZnO nanostructures. The prepared ZnO-CuO nanocomposite has efficiently killed Methicillin resistant Staphylococus aureus (s. aureus) bacterium by producing 24 mm of zone of inhibition (ZOI) comparing to 8 mm ZOI produced by pristine ZnO. The superior antibacterial activity of ZnO-CuO nanocomposite has been attributed to oxidative stress generated by electron transfer pathway and reactive oxygen species (ROS) generation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.