Abstract

In this work, magnetic Co/C microrods were successfully synthesized using direct carbonization of [Co3(BTC)2(H2O)12] precursors. After the carbonization, the original shape of the precursors was well-maintained, while the magnetic Co nanoparticles were well dispersed in the carbon matrix. The Co/C microrods were used as adsorbents for the adsorption of methyl blue (MB), acid fuchsin (AF), malachite green (MG), rhodamine B (Rh B), methyl orange (MO) and methylene blue (MTB) from their aqueous solutions. The results show that Co/C microrods can selectively adsorb triphenylmethane (TPM) dyes, while the adsorption capacities are about 13960, 11,610 and 4893 mg/g for MB, AF and MG dyes, respectively. The adsorption mechanism can be attributed to π-π interaction forces between the sp2 graphitic carbon in Co/C microrods and the triphenyl structure of dyes. In addition, the synthesized magnetic Co/C microrods can be easily removed from water using magnetic separation, and subsequently, regenerated using ethanol treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.