Abstract

The effect of 2 hours of hypothermic Mg-lidocaine cardioplegia upon left ventricular function, myocardial high-energy stores, edema, and ultrastructure was studied as compared to glucose-insulin-potassium (GIK) cardioplegia in 12 mongrel dogs. The myocardial temperature recorded in the ventricular septum was kept at 20 degrees C during the cardioplegia. The heart was re-warmed up to 37 degrees C by the support of cardiopulmonary bypass, then, observations were made during a 60 minutes reperfusion. Left ventricular function was preserved at a more physiological level in cases of Mg-lidocaine cardioplegia. Myocardial ATP as preserved at significantly higher levels following Mg-lidocaine cardioplegia than in cases of GIK cardioplegia (p < 0.05). However, content of myocardial creatine phosphate was higher in the GIK cardioplegia group than that in Mg-lidocaine group in the subendocardium and the ventricular septum. Myocardial edema was significantly suppressed following Mg-lidocaine cardioplegia, and such was significantly lower than in cases of GIK cardioplegia (p < 0.05). The myocardial ultrastructure was protected from ischemic insult in the Mg-lidocaine cardioplegia group. These data suggest that Mg-lidocaine-1-aspartate solution is superior to GIK solution as a cardioplegic solution, and that such will feasibly provide myocardial protection for 2 hours of hypothermic cardiac arrest, in an experimental reperfused model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call