Abstract

Superionic conductors regulated transition metal chalcogenides are the newly emerged electrocatalyst in water electrolysis into clean hydrogen and oxygen. However, there is still much room for the development of structural design, electronic modulation and heterogeneous interface construction to improve the overall water splitting performance in pH-universal solutions, especially in alkaline and neutral mediums. Herein, using β-cyclodextrin (β-CD) and citric acid (CA) organics with abundant hydroxyl (–OH) and carboxyl (–COOH), a special Ag2Se nanoparticles-decorated CoSe2 flower-like nanosheets loaded on porous and conductive nickel foam substrate (Ag2Se-CoSe2/NF) was successfully constructed by a new method of monometallic cation release of coordinated cobalt. The Ag2Se phase exerts the nature characteristics of superionic conductors to modulate the morphological and electronic structures of CoSe2 as well as improve its conductivity. The generated rich active interfaces and abundant Se vacancy defects facilitate numerous active sites exposure to accelerate the hydrogen ion transport and charge transfer. Compared to the single-phase Ag2Se/NF-8 and CoSe2/NF, the prepared Ag2Se-CoSe2/NF-8 with a two-phase synergistic effect achieves an outstanding pH-universal electrocatalytic hydrogen production performance by water electrolysis, as evidenced by a lower overpotential (60 mV, 212 mV and 85 mV vs RHE at 10 mA cm−2 for pH = 0.36, 7.00 and 13.70, respectively). Only a voltage of 1.55 V at 10 mA cm−2 is required to implement the overall water splitting in an alkaline electrolyzer. This work provides significant guidance for the future designation and practical development of transition metal chalcogenides with superionic conductors applied in the electrocatalytic field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call