Abstract

Superintegrable systems are a class of physical systems which possess more conserved quantities than their degrees of freedom. The study of these systems has a long history and continues to attract significant international attention. This thesis investigates finite dimensional quantum superintegrable systems with scalar potentials as well as vector potentials with monopole type interactions. We introduce new families of $N$-dimensional superintegrable Kepler-Coulomb systems with non-central terms and double singular harmonic oscillators in the Euclidean space, and new families of superintegrable Kepler, MIC-harmonic oscillator and deformed Kepler systems interacting with Yang-Coulomb monopoles in the flat and curved Taub-NUT spaces. We show their multiseparability and obtain their Schr\"{o}dinger wave functions in different coordinate systems. We show that the wave functions are given by (exceptional) orthogonal polynomials and Painlev\'{e} transcendents (of hypergeometric type). We construct higher-order algebraically independent integrals of motion of the systems via the direct and constructive approaches. These integrals form (higher-rank) polynomial algebras with structure constants involving Casimir operators of certain Lie algebras. We obtain finite dimensional unitary representations of the polynomial algebras and present the algebraic derivations for degenerate energy spectra of these systems. Finally, we present a generalized superintegrable Kepler-Coulomb model from exceptional orthogonal polynomials and obtain its energy spectrum using both the separation of variable and the algebraic methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.