Abstract

The Mishchenko–Fomenko theorem on superintegrable Hamiltonian systems is generalized to superintegrable Hamiltonian systems with noncompact invariant submanifolds. It is formulated in the case of globally superintegrable Hamiltonian systems which admit global generalized action-angle coordinates. The well known Kepler system falls into two different globally superintegrable systems with compact and noncompact invariant submanifolds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.