Abstract
In this paper, three-dimensional Dunkl oscillator models are studied in a generalized form of superintegrable Euclidean Hamiltonian systems to curved ones. These models are defined based on curved Hamiltonians, which depend on a deformation parameter of underlying space and involve reflection operators. The corresponding symmetries are obtained by the Jordan–Schwinger representations in the family of the Cayley–Klein orthogonal algebras using the creation and annihilation operators of the dynamical sl−1(2) algebra of the one-dimensional Dunkl oscillator. The resulting algebra is a deformation of soκ1κ2(4) with reflections, which is known as the Jordan–Schwinger–Dunkl algebra jsdκ1κ2(4). Hence, it is shown that this model is maximally superintegrable. On the other hand, the superintegrability of the three-dimensional Dunkl oscillator model is studied from the viewpoint of the factorization approach. The spectrum of this system is derived through the separation of variables in geodesic polar coordinates, and the resulting eigenfunctions are algebraically given in terms of Jacobi polynomials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.