Abstract

Hamstring muscle function during knee flexion has been linked to hamstring injury and performance. However, it is unclear whether knee flexion alone (KF) requires similar hamstring electromyography (EMG) activity pattern to simultaneous hip extension and knee flexion (HE-KF), a combination that occurs in the late swing phase of sprinting. This study examined whether HE-KF maximal voluntary isometric contraction (MVIC) evokes higher (EMG) activity in biceps femoris long head (BFlh) and semitendinosus (ST) than KF alone. Effects of shank rotation angles were also tested. Twenty-one males performed the above-mentioned MVICs while EMG activity was measured along ST and BFlh. Conditions were compared using a one-way mixed functional ANOVA model under a fully Bayesian framework. Higher EMG activity was found in HE-KF in all shank rotation positions than in KF in the middle region of BFlh (highest in the 9th channel, by 0.022 mV [95%CrI 0.014 to 0.030] in neutral shank position). For ST, this was only observed in the neutral shank position and in the most proximal channel (by 0.013 mV [95%CrI 0.001 to 0.025]). We observed muscle- and region-specific responses to HE-KF. Future studies should examine whether hamstring activation in this task is related to injury risk and sprint performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call