Abstract

Leakage accidents occurring during oil production and transportation are currently one of the most serious environmental problems worldwide. Developing efficient and environmentally friendly oil-water separation methods is the key to solve this problem. In this work, a facile method to fabricate a high-performance oil absorbent through the loading of ball-milled biochar (BMBC) and octadecylamine on the skeleton of melamine foam (MF) is reported. The resulting ball-milled biochar-based MF (BMBC@MF) displayed a complex three-dimensional porous structure. The BM biochar on the surface of BMBC@MF forms nano/μm-scale folds, which reduced the surface energy of BMBC@MF after grafted octadecylamine. These structures resulted in the conversion of the hydrophilic surface of MF to hydrophobic surface. These characteristics made the modified foam an excellent oil absorbent with a high oil absorption capacity (43-155 times its own weight) and extraordinary recyclability. Furthermore, the BMBC@MF could maintain high hydrophobicity and adsorption stability in a wide pH range (from 1 to 11). More importantly, BM biochar is a cheap and readily available material to make BMBC@MF possible for large-scale production. Therefore, this work provides an effective way for low-cost, environmentally friendly, and large-scale production of superhydrophobic adsorbents for oil-water separation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call