Abstract

Fluorinated ethylene propylene (FEP) films were made superhydrophobic by Ar + O2 plasma etching process. Field emission scanning electron microscopy and atomic force microscopy studies of the plasma-treated FEP samples detected the presence of uniformly distributed nano-protrusions exhibiting a low surface roughness necessary for maintaining the transparency of the samples. In fact, optical transmittance measurements showed an improvement in the transparency of FEP samples after plasma treatment. The X-ray photoelectron spectroscopic analysis showed the presence of –CFx–O–CFx– (x = 1, 2, or 3) linkages in both untreated and plasma-treated samples which explains the hydrophilic nature (contact angle below 90∘) of the untreated sample. Fourier transform infrared spectroscopy showed no changes in the bulk properties of the plasma-treated samples. Moreover, exposure to the environment caused the surfaces to lose their superhydrophobic property in an indefinite amount of time. This has been further studied through a water immersion experiment and explained through the wetting state transition from Cassie state to Wenzel state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.