Abstract

Wettability control has been widely investigated in the last decades for technological applications such as microfluidic devices and self-cleaning surfaces by modifying both the chemical composition and the geometric structure of the surfaces. Inspired by the typical morphology of superhydrophobic leaves (such as lotus leaves), we have developed a dual-scale roughness, micro- and nanosized, on polydimethylsiloxane (PDMS) surfaces. By combining different geometric parameters and plasma treatment conditions, the structures were controlled hierarchically, at different independent length scales. Both the microsized replicated pillars and the nanosized etched posts tuned the wettability of the PDMS surfaces in a very simple way, up to contact angles of 170 degrees . Furthermore, changes in the influence of micro- and nanoscale geometrical structures were investigated. Hysteresis and contact angles of water droplets are evaluated as a combined effect of micropillars and a superimposed roughness, resulting in high advancing contact angles and low sliding angles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.