Abstract
Daytime subambient radiative cooling is a most promising alternative to electricity-free building cooling. However, optical performance degradation arising from surface contamination and inevitable parasitic heat gain still pose unprecedented challenges to cool building at subambient temperatures. This paper proposed a superhydrophobic cellulose aerogel cooler (SHB-CAC) as building envelope by integrating self-cleaning capacity, passive daytime radiative cooling and thermal insulation to reduce environmental heat gain. The SHB-CAC demonstrates high solar reflectance (93%) and long-wave infrared emittance (91%), accomplishing a temperature drop of 8.5 °C lower than the ambient under sunlight of 800 W/m2 in the outdoor experiment. Notably, the SHB-CAC possesses low thermal conductivity (28 mW/(m∙K)) that suppresses parasitic heat gain from warmer surrounding and reduces cooling energy consumption. The self-cleaning property resulting from superhydrophobicity protects SHB-CAC from water wetting and dust contamination but also maintains its good surface radiation capacities under different humidity environment. A building energy simulation was conducted and results showed that 43.4% of cooling energy on average could be saved compared to the building baseline consumption, if SHB-CAC was widely used in China, indicating that the strategy of optical and thermal conductivity management of cooler has the potential to reduce the energy consumption of buildings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.