Abstract

This work reports the creation of superhydrophobic wrinkled surfaces with hierarchical structures at both the nanoscale and microscale. A nanoscale structure with 500 nm line gratings was first fabricated on poly(hydroxyethyl methacrylate) films by nanoimprint lithography while a secondary micro-scale structure was created by spontaneous wrinkling. Compared with random wrinkles whose patterns show no specific orientation, the hierarchical wrinkles exhibit interesting orientation due to confinement effects of pre-imprinted line patterns. The hierarchically wrinkled surfaces have significantly higher water contact angles than random wrinkled surfaces, exhibiting superhydrophobicity with water contact angles higher than 160° and water sliding angle lower than 5°. The hierarchically structured wrinkled surfaces exhibit tunable wettability from hydrophobic to superhydrophobic and there is an observed transition from anisotropic to isotropic wetting behavior achievable by adjusting the initial film thickness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call