Abstract
Superhydrophobic/superhydrophilic micropatterning on a carbon nanotube (CNT) film has been achieved using a laser plasma-type hyperthermal atom beam facility, which produces a small amount of damage and generates a highly anisotropic beam. Fluorination and oxidation on CNT films by exposure to fluorine-atom and oxygen-atom beams caused superhydrophobic and superhydrophilic surfaces, respectively, while maintaining the as-grown fibrous forms of the CNT films. Micropatterned oxidation on CNT films without using photoresists created superhydrophilic microdots and microchannels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.