Abstract

In nature, the water-repellent surface of a superhydrophobic material such as lotus has the micro/nano hierarchical structure, while shish-kebab, which is one of the most fascinating superstructure crystals in polymer science, also exhibits micro/nano hierarchical structure. Accordingly, it remains an idea of whether this structure can be used as the superhydrophobic materials. In this work, a modified flow-induced crystallization method was employed to fabricate a pure shish-kebab membrane, whose wetting behavior and other related performances were comprehensively studied. The membrane surface displays superhydrophobic characteristic with a static water contact angle of 161° and sliding angle of 3°. More importantly, the superhydrophobic membrane not only is of low adhesive, anti-impact, and self-cleaning performance, but also presents oil/water separation capacity, high absorption capacity with porosity (67–83%), and recyclability for organic liquids. This work proposed a new approach from the viewpoint...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.