Abstract

Many naturally occurring surfaces have superhydrophobicity that fulfils their functional demands, which has inspired considerable interest to develop similar artificial superhydrophobic surfaces with a variety of functionalities. Graphene is an ideal candidate for functional superhydrophobic surfaces due to its exceptional physicochemical properties. The recent advances in this emerging field are summarized, including the wetting behavior of water on graphene and the formation of crumpling/nanoparticle/foam-induced hierarchical structures, with emphasis on fundamental understanding for related processes. The potential applications in energy, environmental remediation, and thermal management are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.