Abstract

Wood (kraft) pulp was first dried into a low-density foam-like material by solvent-exchange with anhydrous ethanol. X-Ray tomography showed that, while pulp fibres are flat and resemble ribbons when dried from water, those dried from ethanol are quasi-tubular, inferring that capillary forces derived from a low surface tension solvent are not strong enough to promote fibre lumen collapse, contrary to what happens in water. When the resulting foam-like pulp was then subjected to a vapour phase reaction with trichloromethylsilane (TCMS) a silicon based polymeric coating was created on the surface of the fibres, and the totality of the hydroxyl groups (–OH) on the external surface of cellulose fibres and the internal surface of micropores in the fibre wall became silylated, whereas the surface of the nanopores was inaccessible to TCMS. The novelty lies in the ability to modify both the external surface and the internal micropore structure of cellulose fibres from 50 to 100 % silane coverage, which results in a novel superhydrophobic material, with a contact angle of approximately 150°. This is the first time cellulose is hydrophobized both internally and externally. We refer to the resulting foam as Cellufoam.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.