Abstract
Functional textiles are ideal substrates for wearable electronics. Herein, superhydrophobic, flame-retardant and conductive cotton fabrics were fabricated by sequential assembly of poly(ethylenimine), ammonium polyphosphate and carbon nanotubes, followed by post-treatment with poly(dimethylsiloxane). The resulting fabrics possessed excellent superhydrophobic stability toward acid, alkali, organic solvent, UV irradiation, abrasion and long-time laundering. Meanwhile, when suffering to fire, the coated fabric could generate an efficient char layer and extinguish the fire to protect the cotton fiber from forming flame. Furthermore, this conductive cotton fabric exhibited stable sensing ability in contact with water droplets, showing wide potential application in wearable electronics as multifunctional smart textiles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.