Abstract

In this article, a novel and facile method is used to construct superhydrophobic surfaces on aluminum alloys. A solution of aluminum chloride hexahydrate and N-dodecyltrimethoxysilane (DTMS) in ethanol was used as the electrolyte solution. The hydrolysis of DTMS was accelerated during the electrodeposition process, and the hydrolysate was bonded to a pretreated aluminum surface. The prepared aluminum alloy sample exhibits both superhydrophobicity (the surface water contact angle reached 155°) and excellent corrosion resistance. The inhibition efficiency of this sample is as high as 99.9% in 3.5 wt % NaCl solution, which remains at 98% even after 30 days of immersion. Thus, our fabrication can be well applied to the field of marine corrosion protection. Therefore, the working mechanism was discussed by confocal Raman microspectroscopy (CRM). In addition, the investigation by CRM and electrochemical impedance spectroscopy (EIS) also indicates that superhydrophobic samples show good stability in NaCl solution. The fabrication method can inspire new ideas for the construction of superhydrophobic aluminum alloys in the marine environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call