Abstract

AbstractPhotopolymerization processes are often used in industrial applications because of their solvent‐free formulations and various advantages over conventional thermal processes. Fluorinated monomers and oligomers yield coatings of great interest because of the peculiar characteristics of fluorine atoms: these coatings show hydrophobicity, chemical stability, weathering resistance, etc. Novel UV‐curable fluorinated epoxy acrylate oligomers were synthesized from 1H,1H‐perfluorohexan‐1‐ol, 1,6‐hexamethylene diisocyanate (HDI) and epoxy acrylate (EA). The HDI plays the role of a spacer group in the side chain between the EA backbone chain and the fluorinated segment. This new spacer containing a urethane moiety with long alkyl groups can exhibit a self‐organization effect through the formation of strong hydrogen bonding. This resulted in a stiffening of the whole HDI urethane–perfluoalkyl chain to form nanostructure surface segregation. The designed fluorinated EA with fluoroalkyl (C5F11) units in the side chain exhibited a contact angle of about 151°, which is in the superhydrophobic range. Copyright © 2010 Society of Chemical Industry

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.