Abstract

ABSTRACT Dodecyltrimethoxysilane (DTMS)-modified reduced graphene oxide (rGO) nanocomposites were incorporated into polyurethane (PU) sponges by a combination of dip-coating and thermal curing reduction reaction to obtain a novel superhydrophobic DTMS-rGO-PU sponge for effective oil/water separation. The reaction conditions, such as the dip-coating solution concentration, the thermal curing reduction temperature, and the reaction time were demonstrated to be key factors in forming hierarchical DTMS-rGO nanocomposites, which significantly affected the surface wettability of the PU sponge. The resulting DTMS-rGO-PU sponge with a static water contact angle (WCA) of 152.2° displayed superior superhydrophobicity, and achieved an oil–water separation efficiency of 99.89% for various oil/water mixtures. This superhydrophobic sponge also showed minimal deterioration in its high oil adsorption capacity after 100 recycled adsorption operations. Furthermore, the as-prepared DTMS-rGO-PU sponge was proven to be physically and chemically stable and durable in harsh environmental conditions, suggesting its potential for industrial applications in oil spillage management.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call