Abstract

A brief description of how superhydrophobicity can help mitigate the ice accretion problem on power network equipment and other exposed structures by reducing ice-to-surface adhesion is presented. Basic models, namely the Wenzel and Cassie–Baxter models, accounting for the contact angle of water on solid surfaces relating to the influence of surface roughness on hydrophobicity are discussed. The results on superhydrophobic aluminum surfaces, superhydrophobic nanostructured silver thin films, superhydrophobic nanostructured zinc oxide as well as superhydrophobic nanofibres are also discussed. Some of the superhydrophobic surfaces were tested for ice adhesion and a reduced ice adhesion was obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call