Abstract

A method is proposed for increasing the resistance of a superhydrophobic coating based on a CNT xerogel to frost deposition through the use of decorating nanoparticles. The effects of the addition of fullerenes, carbon nanoonions (CNOs), detonation nanodiamonds, silicon dioxide, and paraffin to the xerogel are tested. An increase in the resistance of the coating to the deposition of condensate in the form of frost is revealed. The addition of fullerene C60 leads to the best results. Increasing the resistance to icing allows us to spend less power on heating the surface during short cold snaps, bypassing the anti-icing properties of the protective superhydrophobic layer. However, the application of this approach shows a deterioration in the resistance of the coating to the penetration of the spray. This is given a qualitative explanation and measures to combat it are proposed. No effect of the additives on the mechanical properties of the coating or its resistance to damage is detected. In additon, decorating additives affect the formation of the coating relief. With this, it is possible to influence the stochastic processes of the formation of roughness during the drying of the xerogel.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.