Abstract

LiBr refrigerating systems are frequently used in industry, but the pipelines are easily corroded or blocked by the LiBr solution with high flow resistance. Here, a superhydrophobic Fe surface was proposed and tested for applicability. After constructing a rough Fe2O3 nanotube array on a Fe surface by the anodization process, a superhydrophobic Fe surface was obtained by silane modification. The as-prepared superhydrophobic surface exhibited excellent repulsion to LiBr solutions. The modified Fe foil showed a 3.35% decrease in thermal conductivity but a 99.2% improvement of anticorrosion protection efficiency. LiBr crystals deposited on this surface were easily detached. The flow resistance along the superhydrophobic surface was reduced to 50% of that along a pure Fe surface. The operation temperature of the system was broadened due to low blockage risk. The excellent thermal conductivity, anticorrosivity, drag reduction, and antifouling performance of the superhydrophobic Fe surface exhibits promise for ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.