Abstract
Both a superhydrophobic structure and layered double hydroxide (LDH) coating were effective to improve the corrosion resistance of alloys. In this study, a superhydrophobic composite coating based on LDHs was constructed on Mg alloy by laser treatment, in situ growth of Mg-Al LDHs, and modification with octadecyl-trimethoxy-silane (OTS). The so-obtained composite coating was coded as L-LDHs-OTS, where L stands for laser treatment. Results showed that the L-LDHs-OTS composite coating presented the best anti-corrosion performance and the corrosion current density was reduced by about 5 orders of magnitude compared with that of the Mg alloy substrate. The excellent corrosion resistance was related to the superhydrophobicity of the composite coating, the compactness and ion-exchange capacity of the LDH layer, and the dense Si-O-Si network within the OTS layer. Moreover, the L-LDHs-OTS composite coating was still effective after 20 days of immersion tests, showing good long-term corrosion resistance due to the existence of hydrophobicity of the composite coating and the self-healing ability of LDHs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.