Abstract

Glass fiber‐reinforced polymer (GFRP) is formed with glass fiber as the reinforcing material and resin as the matrix. It is widely used in wind turbine blades because of its lightweight, high strength, and corrosion resistance properties. Herein, a method to prepare superhydrophobic GFRP surfaces by femtosecond laser direct writing combined with fluoroalkylsilane modification is demonstrated. The prepared GFRP surface has excellent superhydrophobicity with contact angle of 163.9° and sliding angle of 3.8°. In the ice resistance tests, the icing delay time is extended from 33 to 273 s at −5 °C. The ice adhesion strength is reduced from 217.4 to 40.3 kPa. The surface still has superhydrophobicity and ice adhesion strength of less than 100 kPa after ten cycles of the test. The laser exposure conditions are optimized for water/ice repelling and are at high intensity of 4 TW cm−2 pulse−1 and 2.5 m s−1 beam travel speed, which make the presented approach efficient for fabrication over industrially large areas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call