Abstract
AbstractThe nuclear shell model predicts that the next doubly magic shell closure beyond 208Pb is at a proton number Z=114, 120, or 126 and at a neutron number N=172 or 184. The outstanding aim of experimental investigations is the exploration of this region of spherical ‘SuperHeavy Elements’ (SHEs). Experimental methods have been developed which allowed for the identification of new elements at production rates of one atom per month. Using cold fusion reactions which are based on lead and bismuth targets, relatively neutron-deficient isotopes of the elements from 107 to 113 were synthesized at GSI in Darmstadt, Germany, and/or at RIKEN in Wako, Japan. In hot fusion reactions of 48Ca projectiles with actinide targets more neutron-rich isotopes of the elements from 112 to 116 and even 118 were produced at the Flerov Laboratory of Nuclear Reactions (FLNR) at the Joint Institute for Nuclear Research (JINR) in Dubna, Russia. Recently, part of these data which represent the first identification of nuclei located on the predicted island of SHEs were confirmed in two independent experiments. The decay data reveal that for the heaviest elements, the dominant decay mode is α emission rather than fission. Decay properties as well as reaction cross-sections are compared with results of theoretical studies. Finally, plans are presented for the further development of the experimental set-up and the application of new techniques. At a higher sensitivity, the detailed exploration of the region of spherical SHEs will be in the center of interest of future experimental work. New data will certainly challenge theoretical studies on the mechanism of the synthesis, on the nuclear decay properties, and on the chemical behavior of these heaviest atoms at the limit of stability.KeywordsExcitation FunctionCompound NucleusDecay ChainSuperheavy ElementCold FusionThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.