Abstract

The superharmonic resonance of fractional-order Mathieu–Duffing oscillator subjected to external harmonic excitation is investigated. Based on the Krylov–Bogolubov–Mitropolsky (KBM) asymptotic method, the approximate analytical solution for the third superharmonic resonance under parametric-forced joint resonance is obtained, where the unified expressions of the fractional-order term with fractional order from 0 to 2 are gained. The amplitude–frequency equation for steady-state solution and corresponding stability condition are also presented. The correctness of the approximate analytical results is verified by numerical results. The effects of the fractional-order term, excitation amplitudes, and nonlinear stiffness coefficient on the superharmonic resonance response of the system are analyzed in detail. The results show that the KBM method is effective to analyze dynamic response in a fractional-order Mathieu–Duffing system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.