Abstract

We present findings from an analysis of the fractal dimension of solar supergranulation as a function of latitude, supergranular cell size and solar rotation, employing spectroheliographic data in the Ca ii K line of solar cycle no. 23. We find that the fractal dimension tends to decrease from about 1.37 at the equator to about 1 at 20° latitude in either hemisphere, suggesting that solar rotation rate has the effect of augmenting the irregularity of supergranular boundaries. Considering that supergranular cell size is directly correlated with fractal dimension, we conclude that the mechanism behind our observation is that solar rotation influences the cell outflow strength, and thereby cell size, with the latitude dependence of the supergranular fractal dimension being a consequence thereof.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.