Abstract
Similar to atoms in cold gases, exciton–polaritons in semiconductor microcavities can undergo Bose–Einstein condensation. A striking consequence of the appearance of macroscopic coherence in these systems is superfluidity. Now, clear evidence for such behaviour has been found in an exciton–polariton condensate. Superfluidity, the ability of a quantum fluid to flow without friction, is one of the most spectacular phenomena occurring in degenerate gases of interacting bosons. Since its first discovery in liquid helium-4 (refs 1, 2), superfluidity has been observed in quite different systems, and recent experiments with ultracold trapped atoms have explored the subtle links between superfluidity and Bose–Einstein condensation3,4,5. In solid-state systems, it has been anticipated that exciton–polaritons in semiconductor microcavities should behave as an unusual quantum fluid6,7,8, with unique properties stemming from its intrinsically non-equilibrium nature. This has stimulated the quest for an experimental demonstration of superfluidity effects in polariton systems9,10,11,12,13. Here, we report clear evidence for superfluid motion of polaritons. Superfluidity is investigated in terms of the Landau criterion and manifests itself as the suppression of scattering from defects when the flow velocity is slower than the speed of sound in the fluid. Moreover, a Cerenkov-like wake pattern is observed when the flow velocity exceeds the speed of sound. The experimental findings are in quantitative agreement with predictions based on a generalized Gross–Pitaevskii theory12,13, and establish microcavity polaritons as a system for exploring the rich physics of non-equilibrium quantum fluids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.