Abstract

We study the first- and second-order superfluid–Mott insulator transitions of spin-1 bosons in an optical lattice under a magnetic field by the Gutzwiller approximation. We find that, in contrast to previous perturbative studies, the phase boundary curve continuously changes as a function of magnetic field. We also find a sharp cusp structure on the phase boundary curve under some circumstances. When the phase boundary curve deviates from that obtained with the perturbative studies, the phase transition is a first-order one. We further clarify the specific features of the phase transition in the present system. The order parameters exactly at the boundary point, where the transition changes from first to second order, remain finite under a finite magnetic field and continuously vanish as the magnetic field approaches zero.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.