Abstract

The Primordial Inflation Polarization Explorer (PIPER) is a stratospheric balloon payload to measure the polarization of the cosmic microwave background. Twin telescopes mounted within an open-aperture bucket dewar couple the sky to bolometric detector arrays. We reduce detector loading and photon noise by cooling the entire optical chain to 1.7K or colder. A set of fountain-effect pumps sprays superfluid liquid helium onto each optical surface, producing helium flows of 50-100 cm3 s-1 at heights up to 200cm above the liquid level. We describe the fountain-effect pumps and the cryogenic performance of the PIPER payload during two flights in 2017 and 2019.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.