Abstract

We study the superconducting transition in a two-dimensional electron gas with strong Rashba spin-orbit coupling. We assume low electron density, such that only the majority spin band participates in the transition. We show that the superconducting transition follows either the Bose-Einstein condensation (BEC), or the Bardeen-Cooper-Schrieffer (BCS) scenarios, depending on the position of the chemical potential with respect to the bottom of the majority band, and the strength of the Coulomb repulsion between electrons. Hence, the BEC-BCS crossover in this system can be driven either by the change in the chemical potential, or the distance to a gate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.